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Abstract. The problem of an indirect measurement is analysed in the so-called event enhanced
quantum theory. Two classes of semi-indirect and chain indirect measurements are considered
with a view towards applications. A new kind of the EPR experiment is proposed, which can
be used for examining the issue of entanglement and that of interacting quantum systems.

1. Introduction

A consistent theory of measurement is still lacking in quantum mechanics (QM). Let us
focus on two groups of topics. One question is whether mathematical objects employed by
QM have any operational meaning. The other is the problem of a precise description of a
large collection of interacting quantum systems that can be regarded as a classical object
(classical apparatus is used to probe the quantum system, in general).

These difficulties have been dealt with in many ways. The most popular one is von
Neuman’s measurement theory [1], which bypasses the basic obstacles by means of brilliant
assumptions. In turn, it poses some important questions, e.g. whether the measurement is
instantaneous, and if there is an explicit correspondence between measurement operators
and the measuring device. The time of a measurement is not specified, and the reasons
why a measurement occurs at a particular time instant are unknown. We can ask why
one can observe any evolution if the measurement is continuous, as in the quantum Zeno
effect or the watchdog effect [2, 3]. There are possible solutions to those problems, such as
theories based on a reduction of the wavepacket [4, 5]. Despite these disadvantages, von
Neuman’s measurement theory works very well and in many cases produces good results
[6–8]. Of course, when there are so many serious questions about the theory, there are
also some attempts to improve the theory in question. In this respect we find Bohm’s
quantum potential approach [9, 10], which interprets an interaction with the active role of
the enviroment through a specific ‘quantum potential’; the many-Hilbert space approach
[11–14] which successfully explains difficulties of negative measurement; theories built by
quantum opticians to explain quantum jumps, which include such ideas as coherent histories
[15, 7], a quantum stochastic calculus [16, 6] and an open systems approach [17, 15, 7].

Following the general theory of open systems [19, 20], the event enhanced quantum
theory (EEQT) was proposed and developed in [21–27] to describe a coupled quantum–
classical system. The EEQT received an interpretation in terms of a quantum stochastic
process [24]. I employ this theory to investigate an issue of an indirect measurement (IM).
Within EEQT one does not specify what kind of measurement is involved: direct or indirect.

† E-mail address: jamis@ift.uni.wroc.pl
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I differentiate them in the following way. In the direct measurement, the system consists of
two parts: a classical and a quantum one, whereas in the indirect measurement there is one
more element—an additional quantum system. This system is supposed to carry a certain
amount of information about the former quantum one. In some cases, there is a necessity for
taking into account a supplementary quantum system as a part of the measurement device
–otherwise treated as a classical apparatus only. In fact, the indirect measurement† has
occurred in the study of nonlocal properties of QM [28, 29, 38], in measurements of very
weak photon beams (homodyne and heterodyne detection‡ [30–33]) or in observations of
very weak classical forces§ [43, 44]. I examine this subject from the EEQT viewpoint.

The IM deserves some attention in experimental and theoretical investigations. It has a
number of advantages. It allows us to reduce the influence of the measuring device on the
investigated system, to increase sensitivity or precision of the measurement. The performed
analysis of IM is easily interpretable and describes an evolution of the measured quantum
system. The former property means that a continous measurement is performed that allows
us to control, e.g. the detector efficiency [41]. There is also a reason for investigations
of the complex measurement on a quantum system. In [45] one can read‘( . . . ) In a real
experiment the measuring apparatus consists of a series of components. Each component is
coupled to the preceding component, and only the first stage in the series directly ‘contacts’
the system. (. . . ) We need only consider the first stage of the measuring apparatus and its
interaction with the system (. . . )’ . I would like to point out that in the case of EEQT‘the
series of components’cannot be hidden in the apparatus and may have a great influence on
the obtained results.

The paper is organized as follows. Section 2 describes briefly the EEQT, which is
extended to give account of two quantum systems, one or two of them being measured.
Different kinds of measurement are investigated in section 3. I begin with a short
presentation of direct measurement (DM). Descriptions of indirect measurements (a semi-
indirect measurement (SIM) and a chain measurement (CIM)) are included in sections 3.2.1
and 3.3. Some nontrivial effects of IM are pointed out in section 3.2.1 (they can be observed
even without an interaction between quantum systems). This method could be used for a
detection of entanglement of particles. In the last section a classification of measurement
methods is provided from the point of view of their possible implementations.

2. Review of EEQT

This presentation is based on the model proposed in [23]‖. For the sake of simplicity we
restrict the model to the case of a discrete classical system.

The main idea is to describe the evolution of the coupled classical–quantum system
as given by completely positive semigroups. The most natural way of doing this is to
use a tensor product of classical and quantum carrier spaces. The evolution is governed
by completely positive semigroups rather than by a unitary evolution (the system with
dissipation is obtained by coupling classical and quantum system). We assume that the pure
states of the quantum system are given by rays in a complex, finite- or infinite-dimensional
Hilbert spaceH. In this paper the Hilbert spaceH will be H = H1⊗H2, whereH1 andH2

are the Hilbert spaces of the first and second quantum system respectively. The observable
algebra of the quantum system is the algebraAq = L(H1 ⊗H2) of all bounded operators

† In the case of coupling an additional system.
‡ Homodyne and heterodyne detection can be regarded as a very simple example of a semi-indirect measurement.
§ Gravitational wave detection.
‖ The interested readers may find a more precise description of the theory in [21, 22, 24].
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on H1 ⊗H2. The statistical states of the quantum systems are given by positive, weakly
continuous functionalsw onAq with w(I) = 1. LetSq be a convex set of these states. The
elements ofSq are positive operators onH of trace 1.

Let Xcl denote the set of pure states of a classical system. As already mentioned the
classical system was chosen as a finite one. In this caseXcl is finite (with n+ 1 elements).
Scl is a set of statistical states of the classical system, which is the space of probability
measures onXcl. In this case the statesP ∈ Scl are (n+1)-tuplesP = (p0, . . . , pn), where

pα > 0 and
∑
α

pα = 1. (2.1)

The observable algebra of the classical systemAcl is the Abelian algebra of the complex
function onXcl, i.e.Acl

∼= Cn+1†.
The total system has as its algebra:

Atot = Aq⊗Acl = L(H1⊗H2)⊗ Cn+1. (2.2)

It is convenient to realizeAtot as a algebra of operators on some auxiliary Hilbert space:

Htot = H1⊗H2⊗ Cn+1. (2.3)

The algebraAtot is then isomorphic to the algebra of block-diagonal matricesA =
diag(a0, . . . , an), whose entriesaα are bounded linear operators onH = H1⊗H2.

There are six special operations on this algebra.
• The embeddings of the quantum and classical algebras intoAtot. They read

respectively

iq : a ∈ L(H1⊗H2))→ a ⊗ I = diagn+1(a, . . . , a) (2.4)

ic : λ = (λ0, . . . , λn)→ diag(λ0I, . . . , λnI ) (2.5)

λα ∈ C.
So, the states ofAtot are represented by block-diagonal matrices

ρ = diag(ρ0, . . . , ρn) (2.6)

ρα ∈ L(H1⊗H2)) and
∑

α Tr(ρα) = 1.
For the expectation value of an observableA ∈ Atot in a state� ∈ Stot we have

�(A) =∑α Tr(wαaα). we shall identify states� with operators representing them.
• The projectors, which project states ofAtot onto the states ofAq, subalgebras ofAq

(L(H1), L(H2) andAcl are defined as follows:

πq(ρ) =
∑
α

ρα

πq1(ρ) =
∑
α

TrH2 ρα

πq2(ρ) =
∑
α

TrH1 ρα

πc(ρ) = (TrH1⊗H2(ρ0), . . . ,TrH1⊗H2(ρn)).

(2.7)

If we have states:P = (p0, . . . , pn) ∈ Scl andρq ∈ Sq , the state of the joint system
may be built in the following way:

ρq⊗ P = diag(p0ρq, . . . , pnρq) (2.8)

† There is a possibility to build the model where theXcl is an infinite set [26].
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where ∑
α

pα = 1

TrH1⊗H2 ρq = 1.
(2.9)

An initial state of the total system can also be built in this fashion. This state represents the
situation in which there is no correlation between the states of the classical and quantum
systems. The time evolution is given by completely positive (CP) semigroups†.

We deal with a CP semigroupαt , t > 0 of CP maps of the algebra of observables
with the propertyαt(I ) = I . The time evolution of states is given by the one-parameter
semigroup of dual mapsαt : Stot→ Stot with

αt(ρ)(A) = ρ(αt (A)). (2.10)

In view of theorems by Stinespring and Lindblad [42, 18], any norm continuous semigroup
of CP mapsαt must be of the form

αt = exp(tL) (2.11)

with‡

L(A) = i[H,A] +
N∑
i=1

V ∗i AVi − 1
2

{∑
i

V ∗i Vi, A
}

(2.12)

where ∑
i

V ∗i Vi ∈ Atot (2.13)

and

V ∗i AVi ∈ Atot wheneverA ∈ Atot. (2.14)

Vi will be called coupling operators, because they define the coupling between classical
and quantum system§. H is an arbitrary Hermitan operator inAtot : H = H ∗ ∈ Atot. Let
us denoteρ(t) = αt(ρ), so the evolution (2.12) of observables of the system leads to the
Liouville evolution equation for states:

ρ̇(t) = −i[H, ρ(t)] +
∑
i

Viρ(t)V
∗
i − 1

2

{∑
i

V ∗i Vi, ρ(t)
}
. (2.15)

3. Quantum measurement

3.1. The direct measurement

The DM in EEQT is described in terms of:
the classical spaceis Cn+1,
the quantum spaceis a Hilbert spaceH,
the total spaceis a tensor product of these spacesH⊗ Cn+1.
The elements of the quantum algebraL(H) are linear bounded operators on a Hilbers

spaceH. Elements of the classical algebra are probabilistic measures on a set of classical
events. The state of the total (calssical–quantum) system is described:

ρ(t) = diag{ρ0(t), . . . , ρn(t)} (3.1)

† A brief discussion on why this mathematical structure is used here can be found in [22, 42, 18, 19].
‡ Brackets [, ], { , } denote commutator and anticommutator respectively.
§ It is important to observe that the operatorsVi do not need to belong to theAtot.
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where

ρi(t) = pi(t)ρq(t). (3.2)

In this case we have two projectors:
• onto the classical space

pi(t) = Tr ρi(t) (3.3)

• onto the quantum space

ρq(t) =
∑
i

ρi . (3.4)

The evolution of the total system is described by equation (2.15). Using the projections
(3.3) and (3.4), we get an evolution of the quantum and classical systems respectively

ṗi(t) = d

dt
Tr ρi(t) = Tr ρ̇i(t). (3.5)

It is important to make sure this operation is allowed†. We will assume that equation (3.5)
holds true.

ρ̇q(t) = d

dt

∑
i

ρi(t) =
∑
i

ρ̇i (t). (3.6)

Becausei runs over the finite set there is no question about the equation (3.6), but in other
cases problems may arise. Moreover we assume the following shape of the operatorsH

andV , which are present in the equation (2.15):

H = diag{H0, . . . , Hn} (3.7)

and

Hi = Ĥ (3.8)

while Vi satisfy the general assumption (2.13), (2.14). Using notations (3.1), (3.7), (3.8),
equation (3.15) takes the form:

ρ̇i(t) = −i[Ĥ , ρi(t)] +
∑
kj

V kijρj (t)V
k∗
ji − 1

2

{∑
kj

V k∗ij V
k
ji , ρi(t)

}
(3.9)

whereV k are (n + 1) × (n + 1) matrices, whose entries are linear bounded operators in
L(H). Then

ρ̇i(t) = −i[Ĥ , ρi(t)] +
∑
kj

V kijρj (t)V
∗k
ij − 1

2

{∑
kj

V ∗kji V
k
ji , ρi(t)

}
. (3.10)

Inserting (3.10) into (3.5) and (3.6) we get

ṗi(t) = Tr

(
− i[Ĥ , pi(t)ρq(t)] +

∑
kj

V kijpi(t)ρq(t)V
∗k
ij − 1

2

{∑
kj

V ∗kji V
k
ji , pi(t)ρq(t)

})
(3.11)

ṗi(t) =
∑
kj

pj (t)Tr(V ∗kij V
k
ij ρq(t))− pi(t)

∑
kj

Tr(V ∗kji V
k
jiρq(t)) (3.12)

† We assume that basis vector of Hilbert space do not depend on time and a derivative of an operator is also a
trace class operator.
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and

ρq(t) =
∑
i

(
− i[Ĥ , pi(t)ρq(t)] +

∑
kj

V kijpj (t)ρq(t)V
∗k
ij − 1

2

{∑
kj

V ∗kji V
k
ji , pi(t)ρq(t)

})
(3.13)

ρq(t) = −i[Ĥ , ρq(t)] +
∑
ijk

pj (t)V
k
ijρq(t)V

∗k
ij − 1

2

∑
ikj

pi(t)

{
V ∗kji V

k
ji , ρq(t)

}
. (3.14)

Equations (3.12) and (3.14) give us the evolution of the classical and quantum subsystems.
The choice of the operatorsV k is very important, because we can obtain a completely
different evolution simply by rearanging entries ofV k (see [41]).

3.2. The indirect measurement

In this section I consider two kinds of IM. The first is a SIM. This is the case in which
we couple a quantum system to the investigated one and perform a measurement over the
total coupled quantum system† (pair of coupled ones). The second is a CIM. In CIM the
measurement is performed separately over a quantum system, which in turn is a member of
a coupled pair‡.

3.2.1. The semi-indirect measurement.We shall consider the following system.
• There are two quantum systems. They are described within Hilbert spacesH1 and

H2 and governed by HamiltonianŝH1 and Ĥ2 respectively. Moreover we assume that the
interaction between quantum systems is described by a HamiltonianH̃int given in the form
H̃int = H̄1⊗ H̄2 and acting on a tensor product ofH1⊗H2.
• The classical system, which consists of a discrete set, describes measurement events.

This classical system will be considered as an (n+1)-dimensional probability space, where
n is the number of distinguishable classical states§.

The most important issue is that the measurement is done over the whole (coupled)
quantum system. Following the above assumption let us define the system: The Hilbert
space of the total system is

Htot = H1⊗H2⊗ Cn+1. (3.15)

The Hamiltonian of the coupled quantum system is

H̃ = H̃1+ H̃2+ H̃int (3.16)

where

H̃1 = Ĥ1⊗ I
H̃2 = I ⊗ Ĥ2

H̃int = H̄1⊗ H̄2.

(3.17)

I is an identity operator,Ĥ1, Ĥ2 are the Hamiltonian operators of the first and second
quantum system and̄H1⊗H̄2 are the operators describing the mutual interaction of quantum
systems. The Hamiltonian of the total system is in the form

H = diagn+1(H̃ , . . . , H̃ ). (3.18)

† The simplest example of such a measurement is a homodyne detection.
‡ Very simple example of the CIM is a measurement done on EPR particles.
§ Distinguishable by a classical device.
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The state of the total system has the form

ρ(t) = diag(ρ0(t), . . . , ρn(t)) (3.19)

ρi(t) = pi(t)ρ(1)(t)⊗ ρ(2)(t). (3.20)

The shape ofρ(t) is the result of the assumption about the total space. In this case the
states are block-diagonal matrices(n+1)×(n+1) whose diagonal is composed of operators
belonging toL(H1 ⊗ H2). For the sake of simplicity we denote the projections (2.7) as
follows:
• onto the classical space

pi(t) = TrH1 TrH2 ρ (3.21)

• onto the Hilbert spacesH1 andH2 respectively

ρ(1)(t) = TrH2

∑
i

ρi(t) (3.22)

ρ(2)(t) = TrH1

∑
i

ρi(t). (3.23)

The evolution of the total system is governed by the equation (2.15). In the case of a
‘total’ measurement we assume the following shape of the dissipation operatorsVi , which
have to satisfy (2.13), (2.14).

Vi = (P1⊗ P2)
i
kl . (3.24)

Rewriting the equation (2.15) in the form of matrix elements (3.19) and using
assumptions (3.16), (3.24) we obtain

ρ̇i = −i[H̃1, ρi(t)] − i[H̃2, ρi(t)] − i[H̃int, ρi(t)] +
∑
k,l

((P1⊗ P2)
k
ilρl(t)(P

∗
1 ⊗ P ∗2 )kli

− 1
2{(P ∗1 ⊗ P ∗2 )kil(P1⊗ P2)

k
li , ρi(t)}). (3.25)

Substituting 3.17, 3.19 into 3.25 we obtain

ρ̇i(t) = −i[Ĥ1⊗ I, pi(t)ρ(1)(t)⊗ ρ(2)(t)] − i[I ⊗ Ĥ2, pi(t)ρ
(1)(t)⊗ ρ(2)(t)]

−i[H̄1⊗ H̄2, pi(t)ρ
(1)(t)⊗ ρ(2)(t)]

+
∑
k,l

((P1)
k
il ⊗ (P2)

k
il)pl(t)ρ

(1)(t)⊗ ρ(2)(t)((P ∗1 )kli ⊗ (P ∗2 )kli)

− 1
2

{∑
k,l

((P ∗1 )
k
li(P1)

k
li ⊗ (P ∗2 )kli(P2)

k
li), pi(t)ρ

(1)(t)⊗ ρ(2)(t)
}
. (3.26)

In the case of such a system three features are worth further consideration:
• an evolution of a classical state (simply stated, we are interested in outcomes which

are produced by such a system),
• an evolution of the first quantum system (in other words, what kind of change is

introduced by the measurement into the investigated system),
• what kind of properties of a quantum system can be measured by this method.

Classical system. In order to answer the above questions we use the projections (3.21)–
(3.23). Let us see what kind of results can be obtained:

d

dt
ṗi(t) = d

dt
(TrH1 TrH2 ρi(t)) = TrH1 TrH2

d

dt
ρi(t). (3.27)
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Applying the operation (3.27) to equation (3.26), using the properties of the trace operation
and (2.1) we obtain:

ṗi(t) =
∑
kl

pl(t)TrH1(P
∗k
1ilP

k
1ilρ

(1)(t))TrH2(P
∗k
2ilP

k
2ilρ

(2)(t))

−pi(t)
∑
kl

TrH1(P
∗k
1liP

k
1liρ

(1)(t))TrH2(P
∗k
2liP

k
2liρ

(2)(t)). (3.28)

For the sake of simplicity we will not differentiate operatorsP by writing the index of a
Hilbert space on which they act. We assume that they act on a space to whichρ belongs
too. Then

ṗi(t) =
∑
kl

pl(t)TrH1(P
∗k
il P

k
ilρ

(1)(t))TrH2(P
∗k
il P

k
ilρ

(2)(t))

−pi(t)
∑
kl

TrH1(P
∗k
li P

k
liρ

(1)(t))TrH2(P
∗k
li P

k
liρ

(2)(t)). (3.29)

Investigated quantum system.Using (3.22) we get

d

dt
ρ(1)(t) = d

dt

(∑
i

TrH2 ρi(t)

)
=
∑
i

TrH2

d

dt
ρi(t). (3.30)

Under similar conditions as in (3.27), substituting (3.26) into (3.30), using (2.1) and the
trace properties we get

ρ̇(1)(t) = −i[Ĥ1, ρ
(1)(t)](TrH2 ρ

(2)(t))− i[H̄1, ρ
(1)(t)](TrH2 H̄2ρ

(2)(t))

+
∑
ikl

pl(t)(TrH2 P
∗k
il P

k
ilρ

(2)(t))P kilρ
(1)(t)P ∗kil

− 1
2

∑
ikl

pi(t)(TrH2 P
∗k
li P

k
liρ

(2)(t)){P ∗kli P kli , ρ(1)(t)}. (3.31)

In the special case when

H̃int = 0 (3.32)

it becomes

ρ̇(1)(t) = −i[Ĥ1, ρ
(1)(t)](TrH2 ρ

(2)(t))+
∑
ikl

pl(t)(TrH2 P
∗k
il P

k
ilρ

(2)(t))P kilρ
(1)(t)P ∗kil

− 1
2

∑
ikl

pi(t)(TrH2 P
∗k
li P

k
liρ

(2)(t)){P ∗kli P kli , ρ(1)(t)}. (3.33)

It is seen that the only difference between the measurement over interacting and
noninteracting quantum systems consist in the part connected with the intraction of quantum
systems. But despite (3.32), the second quantum system still has a significant influence on
the measured system. (The term depending on the state of the second system is present in
the dissipative part of equation (3.33).)

The additional system.From the projection operation (3.23) we see

ρ̇(2)(t) = d

dt

(∑
i

TrH1

)
=
∑
i

TrH1 ρ̇i(t). (3.34)
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Under similar assumptions as in equation (3.27), using equations (3.26), (2.1) and the
properties of the trace operation we get

ρ̇(2)(t) = −i[Ĥ2, ρ
(2)(t)](TrH1 ρ

(1)(t))− i[H̄2, ρ
(2)(t)](TrH1 H̄1ρ

(1)(t))

+
∑
ikl

pl(t)(TrH1 P
∗k
il P

k
ilρ

(1)(t))P kilρ
(2)(t)P ∗kil

− 1
2

∑
ikl

pi(t)(TrH1 P
∗k
li P

k
liρ

(1)(t)){P ∗kli P kli , ρ(2)(t)}. (3.35)

It is very interesting that even in the case of the SIM the result obtained in this way is not
just a simple combination of those for two systems investigated separately.

3.3. The chain indirect measurement

We are considering the system which consists of:
• two quantum systems (measured and mediating),
• one classical system (measurement device).
The basic assumptions are: (a) there is an interaction between quantum systems, (b) the

measurement is performed over the mediating quantum system. The flow of information
can be seen in the illustration:

Q1 Q2 M
-
-

-
-

primary
quantum system

�
��>

mediating
quantum system

6

measurement
device

Z
ZZ}

According to section 2 this system† is described within the Hilbert space:

Htot = H1⊗H2⊗ Cn+1 (3.36)

whereH1,H2 are the respective Hilbert spaces of the quantum systems andCn+1 the space
of classical events (it is the (n + 1)-dimensional probability space). The state of the total
system is represented by

ρ(t) = p(t)ρ(1)(t)⊗ ρ(2)(t) (3.37)

wherep(t) is (n+ 1)-tuplep(t) = {p0(t), . . . , pn(t)}. ρ(1)(t), ρ(2)(t) describe the states of
quantum systems. We assume also the total Hamiltonian

H̃ = H̃1+ H̃2+ H̃int (3.38)

whereH̃1, H̃2 are Hamiltonians of the first and the second system respectively.H̃int is a
Hamiltonian describing an interaction between quantum systems. In order to define the
evolution of an open system, we have to define dissipative operators. They must satisfy the
general conditions: (2.13), (2.14) and we take them in the form

{Vi}kl = I ⊗ P ikl . (3.39)

This is because of the assumption that the measurement is performed over the mediating
quantum system.{Vi}kl are bounded linear operators onH1 ⊗H2 ({Vi}kl ∈ L(H1 ⊗H2))
andPkl ∈ L(H2). In the present case the same projections as in section 3.2.1 ((3.21), (3.22),

† As well as in section 3.2.1.
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(3.23)) arise. Within this mathematical framework we can give a more precise description
of the Hamiltonian operators

H̃1 = Ĥ1⊗ I
H̃2 = I ⊗ Ĥ2

H̃int = H̄1⊗ H̄2.

(3.40)

So the equation (2.15) takes the general form:

ρ̇i(t) = −i[H̃1, ρi(t)] − i[H̃2, ρi(t)] − i[H̃int, ρi(t)]

+
∑
kl

V kil ρl(t)V
k∗
li − 1

2

{∑
kl

V k∗il V
k
li , ρi(t)

}
. (3.41)

To be specialized to concrete situations, see below.

The classical system.Using the decomposition (3.20), assumption (2.1) and the trace
properties we get the classical state evolution (cf also equation (3.27))

ṗi(t) =
∑
kl

pl(t)TrH2(P
∗k
il P

k
ilρ

(2)(t))− pi(t)
∑
kl

TrH2(P
∗k
li Pliρ

(2)(t)). (3.42)

The measured system.The evolution of the measured quantum system can be obtained by
using (3.41), (3.22), (3.38), (3.40) and the trace properties.

ρ̇(1)(t) = − i[Ĥ1, ρ
(1)(t)] TrH2(ρ

(2)(t)) (3.43)

− i[H̄1, ρ
(1)(t)] TrH2(H̄2ρ

(2)(t)) (3.44)

+
∑
ikl

pl(t)TrH2(P
∗k
il P

k
ilρ

(2)(t))ρ(1)(t) (3.45)

−
∑
ikl

pi(t)TrH2(P
∗k
li P

k
liρ

(2)(t))ρ(1)(t). (3.46)

Applying property (2.1) we see that∑
ikl

pl(t)(TrH2 P
∗k
il )P

k
il )ρ

(2)(t))−
∑
ikl

pi(t)TrH2(P
∗k
li P

k
li )ρ

(2)(t)) = 0 (3.47)

so finally equation (3.46) takes the form

ρ̇(1)(t) = −i[Ĥ1, ρ
(1)(t)] TrH2(ρ

(2)(t))− i[H̄1, ρ
(1)(t)] TrH2(H̄2ρ

(2)(t)). (3.48)

Introducing a new effective Hamiltonian, which depends on time:

Hnew(t) = (TrH2 ρ
(2)(t))Ĥ1+ (TrH2 H̄2ρ

(2)(t))H̄1 (3.49)

equation (3.48) may be rewritten:

ρ̇(1)(t) = −i[Hnew(t), ρ
(1)(t)]. (3.50)

We see here that the evolution of the primary system is of a Hamiltonian type.
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The mediating system.Applying the decomposition (3.20) and the projection (3.23) to
equation (3.41) we get

ρ̇(2)(t) = −i[Ĥ2, ρ
(2)(t)] TrH1 ρ

(1)(t)− i[H̄2, ρ
(2)(t)] TrH1(H̄1ρ

(1)(t))

+
∑
ikl

pl(t)(P
k
ilρ

(2)(t)P ∗kil )TrH1 ρ
(1)(t)

− 1
2

∑
ikl

pi(t){P ∗kli Pli , ρ(2)(t)}TrH1 ρ
(1)(t). (3.51)

Equation (3.51) cannot be simplified in the same way as (3.46) because of the
anticommutator in the fourth entry.

3.4. Comparison of CIM and SIM

3.4.1. The classical results.The difference between SIM and CIM is such that the state of
ρ(1)(t) has an explicite influence on the result of the measurement. In CIM this influence is
strictly indirect. In both IMs a special treatment of the system is required in order to obtain
information about the investigated quantum system. The case of CIM is more complicated
then SIM because a special choice of measurement operators is required, which should
be sensitive to the presence of the investigated system. Moreover in both IMs we have
to unravel information aboutρ(1) from the ‘total’ output (e.g. see [30, 31]). The most
interesting fact is that the nonlocal properties of QM (without the interaction of quantum
systems) can be observed only in SIM, whereas in CIM we observe the mediating quantum
system only.

3.4.2. The primary quantum system.When we compare equations (3.33) (SIM) and (3.50)
(CIM) we see that both kinds of measurement generate a different evolution of a system.
Equation (3.33) gives account of a typical dissipative evolution, similar to the direct
measurement, whereas in CIM the evolution of the primary system is that of a Hamiltonian
type. Of course, the new Hamiltonian depends on time, which may give us a complicated
task to solve this kind of equation. But the most important fact is that CIM offers a
possibility to reduce the influence of a measurement by allowing for a special treatment of
a quantum state, for instance by using a feedback (similar to [39, 40]). It has also the great
advantage of generating well-defined states suitable for encoding classical information. This
property can be used in the quantum transfer of classical information [41].

3.4.3. The mediating and additional quantum state.The equations describing the evolution
of ρ(2) also expresses the difference between IM and DM. In (3.51) (CIM) we can find out
what kind of properties the operatorsP kij should possess to be able to measure the state of
ρ(1). Furthermore the properties ofρ(1) can be measured (or well seen) only when the system
described byρ(2) has been chosen appropriately. (The meaning of the word ‘appropriately’
depends on the particular choice of the system.) The main difference, which is seen in
(3.35), (3.51), lies in the influence of the primary system on the second one. Roughly
speaking, in CIM the mediating state evolution is multiplied by the trace ofρ(1) whereas in
SIM this dependence is much more complicated. Moreover in SIM the influence is present
even when there is no coupling(H̃int = 0) between quantum systems. The measurement
induces a mutual influence of the quantum systems.
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4. Conclusions

The general advantages of applying EEQT as a measurement theory are:
• it satisfies all demands of a measurement theory [23],
• it allows us to define a broad class of detectors following the same operators acting

on a Hilbert space [41],
• it describes a continuous measurement process.

4.1. CIM

This method of measurement should be applied in two cases. First, when it is very important
to reduce the influence of a measurement device on the investigated system (and when it
is possible to obtain the required information). The influence is even weaker than in DM†.
Second, when we want to generate a particular state in order to encode some information.
This last ability may be very important for quantum transmission of classical information.

We stress once again that not every piece of information is accessible this way.
Obtaining information about the quantum stateρ(1) requires suitable measurement operators.
They have to be sensitive to the changes in the evolution ofρ(2) caused byρ(1). CIM creates
a new possibility for a measurement but requires a special treatment of the system. In order
to obtain any results in CIM two issues are extremely important:
• a proper choice of the mediating system (it has to be sensitive to the changes caused

by the primary system),
• the choice of the dissipative operators (the proper coupling of the quantum systems

with the classical one—if this is done incorrectly, no information will be received).

4.2. SIM

There are some advantages in comparison with CIM and DM.
• The main one is the possibility of a measurement of very weak properties (hardly

observable) of a system. This cannot be measured by DM. (This is done through the
modulation of the base signal by a weak signal. When combined with the special treatment
of the output, it can give us very interesting results.) We may see this kind of measurement
in a homodyne measurement. If the local oscillator is chosen properly, it allows us to
observe the features of the system which cannot be seen in any other way.
• The SIM gives also a possibility for measurement of any observable, whereas CIM

requires observables that are sensitive to special properties of the system.

5. The possible usage

Comparing the advantages and disadvantages of the three methods of quantum measurement
described, DM, SIM and CIM, we may figure where each of those methods may be more
profitable. DM is the simplest measurement‡ so it should be used if the measurement can
be done in this way, because the outcomes do not include any impact of other systems. The
only problem which can appear at this moment is the preparation of the system, because
usually it is very difficult to reduce an influence of other systems and receive a pure coupling
of a quantum and classical device. From this point of view, SIM should commonly be used
in the situation when the removal of an influence of other systems is impossible. SIM

† See equation (3.50).
‡ But only from the theoretical point of view. In the case of an experiment it may be the most difficult one.
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offers also a possibility to modulate a base signal by another quantum system in order to
get information about the second system. The last procedure (CIM) described in this paper
may be applied in two situations: to minimize the influence of the measurement device on
the system or to generate some kind of quantum state.
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